Synthesis and conformational studies of regio- and conformational isomers derived by $\mathbf{0}$-alkylation of tetrahydroxy[3.1.3.1] metacyclophane ${ }^{1}$

Takehiko Yamato,* Yoshiyuki Saruwatari and M asashi Yasumatsu
Department of Applied C hemistry, Faculty of Science and Engineering, Saga U niversity, H onjo-machi 1, Saga-shi, Saga 840, J apan

The synthesis and structure of 0 -alkylated tetrahydroxy[3.1.3.1]metacyclophanes are described. 6,13,22,29-Tetra-tert-butyl-9,16,25,32-tetrahydroxy[3.1.3.1]metacyclophane 3 was tetra-0-alkylated with alkyl bromides ($R \mathrm{Br}: \mathrm{R}=\mathrm{Et}, \mathrm{Pr}$ and Bu) in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to yield one pure stereoisomer in each case (i.e. the 1,4 -alternate conformer) 5 b -d as a major product; other possible isomers were not observed. Ring inversion by oxygen-through-the-annulus rotation is allowed for tetraethoxy and tetrapropoxy derivatives $5 \mathrm{~b}, \mathrm{c}$ (for 5 c ; coalescence temperature ca. $90^{\circ} \mathrm{C}$) but inhibited for the tetrabutoxy derivative 5 d . In contrast, alkyl halides having larger alkyl groups than ethyl afforded poor yields of the corresponding tetra- 0 -alkylated compounds 5 although a significant amount of 1,3-di-0-substitution products 4 resulted when N aH was used as a base. On the other hand, the tetraol 3 was tetra- 0 -alkylated with benzyl bromide in the presence of NaH to yield exclusively the cone conformer cone-5f in quantitative yield. Only when the cation- π interactions between the alkali-metal cations and the π-electrons of the benzyl group(s) are able to hold the latter and the oxide group(s) on the same side of the [3.1.3.1]M CP is the conformation immobilized to the cone. The template effect of the sodium cation plays an important role in this benzylation. The ${ }^{1}$ H N M R spectral behaviour of these macrocyclic metacyclophanes is also discussed.

Introduction

Gutsche, ${ }^{2}$ Reinhoudt ${ }^{3}$ and Shinkai ${ }^{4}$ have reported that derivatization of the hydroxy groups of tetrahydroxy[1.1.1.1]M CP (M CP = metacyclophane) (calix[4]arene) led to conformationally rigid structures, i.e. fixed conformations such as 'cone', 'partial cone', '1,2-alternate' and '1,3-alternate'. A 'cone' shape conformation is shown in eqn. (1).

H owever, there were few reports of similar derivatization of the hydroxy groups of dihomocalix[4]arenes in spite of the formation of five conformers (i.e. cone and partial-cone, 1,2alternate, 1,3-alternate and 1,4-alternate conformers) being possible. ${ }^{5}$
In contrast to four possible conformations in calix[4]arenes, ${ }^{2 a}$ conformational isomerism in the system described here is slightly more complicated. Furthermore, the conformations of internally substituted tetrahydroxy[n.1.n.1]M CPs having more than three methylene bridges are, so far, unknown. Thus, there is substantial interest in investigating the effects of 0 -alkyl substituents on the conformations of the flexible higher tetrahydroxy[3.1.3.1]M CPs.

In this paper we report on the regioselective synthesis of conformers derived from the 0 -alkylation of tetrahydroxy[3.1.3.1]M CP and an investigation of the ring inversion in these systems.

Results and discussion

Recently, Gutsche et al. reported on the influence of 0 -

propane bridge

Fig. 1 Conformers possible for 0 -tetrasubstitution of tetrahydroxy[3.1.3.1]M CPs
substituents on the conformational isomerism of calix[4]arenes in detail. ${ }^{2 a, 2 c}$ These authors have established that interconversion between conformers, which occurs by oxygen-through-theannulus rotation, is sterically allowed for methyl and ethyl groups, but inhibited by 0 -substituents bulkier than a propyl group.
In studies on the conformer distribution of calix[4]arenes Shinkai et al. reported that the partial-cone is sterically less crowded than the cone and, therefore, is formed preferentially. ${ }^{6}$ On the other hand, the cone results only when the template

3

distal-4 a R = Me
b $\mathrm{R}=\mathrm{Et}$
c $\mathrm{R}=\mathrm{Pr}$ $\begin{aligned} & c R=P r \\ & d R=B u\end{aligned}$ d $R=B u$
e $R=$ Ally e $\mathrm{R}=$ Allyl
f $\mathrm{R}=\mathrm{PhCH}_{2}$

5 a R $=\mathrm{Me}$
bR $=\mathrm{Et}$
$c R=P r$
$d R=B u$
$\mathrm{d} \mathrm{R}=\mathrm{Bu}$
$\begin{aligned} \text { e } \mathrm{R} & =\text { Allyl } \\ \text { f } \mathrm{R} & =\mathrm{PhCH}_{2}\end{aligned}$

Scheme 1 (see Table 1) Reagents and conditions: i, N aH, D M F-TH F, room temp. for 1 h; ii, R X , reflux for 3 h

Table 1 O-A lkylation of tetraol $\mathbf{3}$ with alkyl halide in the presence of NaH

Run	R X	Time (t/h)	Products yield (\%) ${ }^{\text {a }}$	
1	M el	0.25	distal-4a (80) [72] ${ }^{\text {b }}$	5a (20)
2	M el	1	distal-4a (0)	5a (100) [96] ${ }^{\text {b }}$
3	EtBr	1	distal-4b (100) [90]	5 b (0)
4	EtBr	3	distal-4b (50)	5b (50)
5	EtBr	6	distal-4b (20)	5b (80) [70]
6	PrBr	3	distal-4c (84) [74] ${ }^{\text {c }}$	5 c (7)
7	BuBr	3	distal-4d (100) [95]	5 d (0)
8	Allyl bromide	3	distal-4e (0)	5 e (100) [95]
9	PhCH 2 Br	3	distal-4f (0)	5 f (100) [90]

${ }^{\text {a }}$ R elative yields determined by ${ }^{1} \mathrm{H}$ N M R spectroscopy. ${ }^{\text {b }}$ I solated yields are shown in square brackets. ${ }^{\text {c }}$ proximal-4c was obtained in 9% yield.
metal, which strongly interacts with phenolic oxygens, is present in the reaction system. In particular, formation of the 1,2alternate conformer is very limited because of the extreme difficulty of direct 0 -alkylation. ${ }^{3 \mathrm{~b}, 7}$

In fact, 6,13,22,29-tetra-tert-butyl-9,16,25,32-tetrahydroxy[3.1.3.1]M CP 3 was 0 -alkylated with M el in the presence of NaH under reflux in DMF-THF for 15 min to yield one pure regioselective isomer, the 1,3 -di-0-substitution product distal4a as a major product along with the tetramethoxy derivative 5a; other possible isomers were not observed. Prolonged reaction times led to complete 0 -methylation, affording tetramethoxy derivative 5 a in quantitative yield. Similar results were obtained in the 0 -ethylation of $\mathbf{3}$ with ethyl bromide. Interestingly, 0-alkylation with alkyl bromides such as propyl bromide and butyl bromide having larger alkyl groups than ethyl afforded poor yields of the corresponding tetra-0-alkylated compounds 5; however, a significant amount of 1,3-di-0substitution products $\mathbf{4}$ results when NaH is used as a base. On the other hand, in spite of having larger alkyl groups than ethyl, 0 -alkylation with allyl bromide and benzyl bromide exclusively afforded tetra- 0 -substitution products 5 e and $5 f$ under the same reaction conditions. This result can be easily explained by the higher reactivities of allyl bromide and benzyl bromide than those of propyl bromide and butyl bromide. The 0 -alkylation described here was found to be strongly affected not only by the bulkiness of the alkyl halide but also by its reactivity.

Attempted 0 -alkylation of 6,13,22,29-tetra-tert-butyl-9,16,25,32-tetrahydroxy[3.1.3.1]M CP 3 with propyl bromide in the presence of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ failed, starting compound being recovered in almost quantitative yield. When $\mathrm{K}_{2} \mathrm{CO}_{3}$ or $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was used as a base, a mixture of 1,2-disubstituted product proximal-4c and the 1,3-disubstituted product distal-4c was obtained; other possible isomeric 1,4 -disubstituted products were not observed. In contrast, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ led to tetra- 0 -substitution to afford $\mathbf{5 c}$ as a major product.

The ratio of the products dipropoxy[3.1.3.1]M CP 4c and tetrapropoxy[3.1.3.1]M CP $\mathbf{5 c}$ in the 0 -propylation of tetra-

Table 2 O-substitution of tetraol 3 with propyl bromide in the presence of $\mathrm{M}_{2} \mathrm{CO}_{3}$

| | | Products yield (\%) ${ }^{\text {a,b }}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Run | Base | proximal-4c | distal-4c | $\mathbf{5 c}$ |
| 1 | $\mathrm{Li}_{2} \mathrm{CO}_{3}{ }^{\mathbf{c}}$ | 0 | 0 | 0 |
| 2 | $\mathrm{Na}_{2} \mathrm{CO}_{3}{ }^{\mathrm{d}}$ | 20 | 30 | 0 |
| 3 | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | 50 | 50 | 0 |
| 4 | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | $12(9)$ | $12(9)$ | $76(60)$ |

${ }^{\text {a }}$ R elative yields determined by ${ }^{1} \mathrm{H}$ N M R spectroscopy. ${ }^{\text {b }}$ I solated yields are shown in parentheses. 'Starting compound 3 was recovered in almost quantitative yield. ${ }^{\text {d }}$ Starting compound $\mathbf{3}$ was recovered in 50% yield.

Scheme 2 (see Table 2) Reagents and conditions: i, $\mathrm{M}_{2} \mathrm{CO}_{3}$, acetone, room temp. for 1 h ; ii, PrBr , reflux for 3 h
hydroxy[3.1.3.1]M CP 3 is governed by the nature of the alkalimetal carbonate used as a catalyst, as revealed by the results listed in Table 2. Thus, use of lithium carbonate in this reaction gave only recovery of the starting compound. U se of sodium carbonate however gave the dipropylated products proximal-4c and distal-4c (40:60) in 50% yield with recovery of starting compound; this was in spite of use of a large excess of sodium carbonate. H owever, use of potassium carbonate gave selective dipropylation, the larger alkaline metal K^{+}obviously gives rise to a higher yield of the dipropylation product $\mathbf{4 c}$; use of the larger Cs^{+}cation leads to a decreased product yield. These results indicate that the alkali-metal cation plays an important role not only for the regioselectivity, based on the template effect, but also for the product yield of the 0 -alkylation. This behaviour has been previously observed in the 0 -alkylation of calixarenes. ${ }^{4,6}$
When a weak base is used $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$, the undissociated OH group forms intramolecular hydrogen bonds with the dissociated O^{-}group (intermediate \mathbf{A}, \mathbf{B} in Fig. 2) rather than leading to further dissociation to form the metal template intermediate C, D. These results differ from those observed under theinfluence of a strong base(e.g. NaH) which gaveriseto complete formation of two O^{-}anions. The same phenomenon

A
PrBr

proximal-4c

B

distal-4c

Fig. 2 Possible intramolecular hydrogen bonds with the dissociated O^{-}groups
might occur in the dipropylated product 4. Thus, double alkylation was not observed due to intramolecular hydrogen bond formation with the propoxy groups.

The present template effect was also confirmed by the 0 propylation of dipropoxy[3.1.3.1]M CP proximal-4c and distal4 c with NaH as a base to furnish exclusive formation of tetrapropoxy[3.1.3.1]M CP 5c via the intermediates \mathbf{C} and \mathbf{D} (see Fig. 3).

C

D

Fig. 3 Possible intermediates for formation of tetra-0-propylation
As mentioned previously, 6,13,22,29-tetra-tert-butyl-9,16, 25,32-tetrahydroxy[3.1.3.1]M CP 3 was tetra-0-benzylated with benzyl bromide in the presence of NaH to yield exclusively the tetra-0-benzylated product cone-5f in quantitative yield. No formation of other possible conformers (see Fig. 1) has been observed. A similar reaction was carried out in the pres-

Table 3 0-Substitution of tetraol 3 with butyl bromide and benzyl bromide in the presence of NaH and $\mathrm{CS}_{2} \mathrm{CO}_{3}$

| | | | Product yields (\%) ${ }^{\text {a,b }}$ | |
| :--- | :--- | :--- | :--- | :---: | :---: |
| Run | RX | Base | cone-5 | 1,4-alternate-5 |
| 1 | BuBr | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 0 | $100(90)$ |
| 2 | BzlBr | NaH | $100(90)$ | 0 |
| 3 | BzlBr | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | $80(70)$ | $20(13)$ |

${ }^{\text {a }}$ R elative yields determined by ${ }^{1} \mathrm{H}$ NM R spectroscopy. ${ }^{\text {b }}$ I solated yields are shown in parentheses.

cheme 3 (see Table 3) R eagents and conditions: i, N aH, D M F-TH F, room temp. for 1 h or $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, acetone, room temp. for 1 h ; ii, BuBr or BzlBr , reflux for 3 h
ence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to yield a mixture of two conformers of the tetra-O-benzylated product $5 \mathbf{f}$ (ratio of $80: 20$ for cone-5f:1,4-alternate-5f) in quantitative yield.
The ${ }^{1} \mathrm{H}$ NMR spectrum of cone- 5 f shows a singlet for the tert-butyl protons at $\delta 1.12$, and two doublets (J 2.0 Hz) of equal intensity for the aromatic protons at $\delta 6.78$ and 6.97. Furthermore, the resonance for the $\mathrm{ArCH}_{2} \mathrm{Ar}$ methylene protons appeared as a pair of doublets ($\delta 3.08$ and $4.36, \mathrm{~J}_{\mathrm{AB}}=13.4$ Hz (relative intensity $1: 1$)
Similarly, the ${ }^{1} H$ NMR spectrum of 1,4-alternate- $\mathbf{5 f}$ shows a singlet for the tert-butyl protons at $\delta 1.08$, a set of doublets ($J=11.5 \mathrm{~Hz}$) for benzyl protons at $\delta 4.35$ and 4.45 , and two doublets of equal intensity for the aromatic protons at $\delta 7.00$ and 7.12. Furthermore, the resonance for the $\mathrm{ArCH}_{2} \mathrm{Ar}$ methylene protons appeared as a pair of doublets ($\delta 3.29$ and $4.54, \mathrm{~J}_{\mathrm{AB}}=13.4 \mathrm{~Hz}$) (relative intensity $1: 1$).

Fig. 4 Partial ${ }^{1} \mathrm{H}$ NMR spectra for cone-5f and 1,4-alternate-5f
Although these ${ }^{1} \mathrm{H}$ N M R signals are consonant with both the cone and 1,4-alternate conformers, the middle methylene protons for the propane bridge $\mathrm{ArCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$ are observed as a split multiplet pattern for cone-5f at δ 1.32-1.48 and 1.61-1.88 (relative intensity $1: 1$), whilst for the 1,4 -alternate- 5 f only a single multiplet is observed at 1.40-1.59. The former pattern corresponds to the cone conformer because the middle methylene protons for the propane bridge $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$ are in different environments, whilst the latter pattern corresponds to the 1,4-alternate conformer where the protons are in the same environment (Fig. 4).

Tetra-0-butylation of the tetraol $\mathbf{3}$ with butyl bromide in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, however, exclusively yields the tetra-0butylated product 1,4-alternate-5d in quantitative yield. These findings support the view that when substituents are introduced into tetrahydroxy[3.1.3.1]M CP 3 a 1,4-alternate conformer is preferred to reduce steric crowding.

The preferential formation of cone-5f was observed in the reaction of the tetraol $\mathbf{3}$ with benzyl bromide in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ along with the 1,4-alternate conformer 1,4-alternate-5f (20\%) (Table 3). It was further found that the proportion of cone-5f dramatically increased, almost to exclusive formation, in the 0 -substitution of tetrahydroxy[3.1.3.1]M CP 3 with benzyl bromide when a stronger base was employed (e.g. NaH rather than $\mathrm{Cs}_{2} \mathrm{CO}_{3}$). 0 -A lkylation with butyl bromide, however, failed to give a similar result, only the 1,4-alternate-5f being obtained even in the presence of NaH .

These results indicate that when butyl bromide is used in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, the undissociated OH group forms intramolecular hydrogen bonds with the dissociated O^{-}group, which weakens the metal template effect arising from the $\mathrm{M}^{+} \cdots \mathrm{O}^{-}$interaction (Fig. 5). Thus, it seems that a ring inversion occurs as a result of the tetraol $\mathbf{3}$ having a more flexible structure than calix[4]arene, thus giving rise to the completely inverted 1,4-alternate conformer. In constrast, only when the template metal can hold the benzyl group(s) and the oxide group(s) attributable to the cation- π-interactions ${ }^{9}$ on the same

Table 4 Influence of 0 -substituents on the oxygen-through-theannulus rotation in [3.1.3.1]metacyclophanes $\mathbf{4}$ and $\mathbf{5}$

0-Substituent	4	5
M e	M obile	M obile
	($\mathrm{T}_{\mathrm{c}}<-60^{\circ} \mathrm{C}$)	($\mathrm{T}_{\mathrm{c}}<-60^{\circ} \mathrm{C}$)
Et	M obile	M obile
	$\begin{aligned} & \left(\mathrm{T}_{\mathrm{c}}=10^{\circ} \mathrm{C},\right. \\ & \left.\Delta \mathrm{G}_{\mathrm{c}}^{\ddagger}=13.3\right) \end{aligned}$	($\mathrm{T}_{\mathrm{c}}<-60{ }^{\circ} \mathrm{C}$)
Pr	Immobile ${ }^{\text {b }}$	$\begin{aligned} & \text { M obile }\left(\mathrm{T}_{\mathrm{c}}=90^{\circ} \mathrm{C}\right. \text {, } \\ & \left.\Delta \mathrm{G}_{\mathrm{c}}^{\ddagger}=14.7\right)^{\mathrm{b}} \end{aligned}$
Bu	Immobile ${ }^{\text {b }}$	Immobile ${ }^{\text {b }}$
Bzl	Immobile ${ }^{\text {b }}$	Immobile ${ }^{\text {b }}$

${ }^{\mathrm{a}} \mathrm{T}_{\mathrm{c}}:\left[{ }^{\circ} \mathrm{C}\right] ; \Delta \mathrm{G}_{\mathrm{c}}^{\ddagger}$: $\left[\mathrm{kcal} \mathrm{mol}{ }^{-1}\right] . \mathrm{T}_{\mathrm{c}}$ and $\Delta \mathrm{G}_{\mathrm{c}}^{\ddagger}$: were determined in $\mathrm{CDCl}_{3}{ }^{-}$ CS_{2} (1:3) by using SiM_{4} as reference unless otherwise indicated.
${ }^{\mathrm{b}}$ Solvent: $\mathrm{CD} \mathrm{Br}_{3}-\mathrm{CDCl}_{3}(6: 1)$.

Fig. 5 R ing inversion of the tetraol $\mathbf{3}$ and immobilization by metal template
side of the [3.1.3.1]M CP, is the conformation immobilized to the cone. Although the much larger contribution of Cs^{+}to the template effect than Na^{+}as reported by H arrowfield ${ }^{10}$ can be expected, the larger Cs^{+}might enlarge the cyclophane ring of tetraol 3 to form sufficient space for ring inversion to afford a 1,4-alternate conformer.
A s mentioned previously, it is known that four different conformers (cone, partial-cone, 1,2-alternate and 1,3-alternate) can exist in conformationally immobile calix[4]arenes. ${ }^{6}$ In 0 alkylated [3.1.3.1]M CPs 4 and 5 , on the other hand, several conformations can exist as in 0 -alkylated calix[4]arenes. Thus, the conformational complexity in the 0 -alkylated [3.1.3.1]M CPs 4 and 5 must be considered.
The influence of 0 -substituents on the oxygen-through-theannulus rotation of di-0-alkylated [3.1.3.1]M CPs 4 is compared with that in the corresponding tetra-O-alkylated [3.1.3.1]M CPs 5 in Table 4. The observation of a singlet signal for each proton even at the lower temperature $\left(-60^{\circ} \mathrm{C}\right.$ in $\mathrm{CDCl}_{3}-\mathrm{CS}_{2}, 1: 3$) in the ${ }^{1} \mathrm{H} N M R$ spectrum of dimethoxy[3.1.3.1]M CP (distal-4a) and tetramethoxy[3.1.3.1]M CP 5a indicates that the methoxy groups in distal-4a and 5a rotate rapidly through the annulus.
Although the same phenomenon was observed in tetraethoxy[3.1.3.1]M CP 5 b even at a lower temperature ($-60^{\circ} \mathrm{C}$ in $\mathrm{CDCl}_{3}-\mathrm{CS}_{2}, 1: 3$), in diethoxy[3.1.3.1]M CP (distal-4b) at $0^{\circ} \mathrm{C}$ the methylene protons of $\mathrm{ArCH}{ }_{2} \mathrm{Ar}$ and $\mathrm{ArCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$ are observed to be split into two sets of doublets (A B system, J_{AB} 13.4 Hz) at $\delta 3.35$ and 3.90 and multiplets at $\delta 2.66$ and 2.84 , respectively. The coalescence temperature of the methylene protons of $\mathrm{ArCH}_{2} \mathrm{Ar}$ is $10^{\circ} \mathrm{C}$ and the free energy of activation for inversion is estimated to be $13.3 \mathrm{kcal} \mathrm{mol}^{-1}(1 \mathrm{cal}=4.184 \mathrm{~J})$. This difference may be attributed mainly to a higher barrier for diethoxy[3.1.3.1]M CP (distal-4b) to conformational ring flip-
ping than that for tetraethoxy[3.1.3.1]M CP 5b by the introduction of two ethyl groups onto the phenolic oxygens. From the coalescence temperature of the $\mathrm{ArCH}{ }_{2} \mathrm{Ar}$ methylene protons in $\mathrm{CD} \mathrm{Br}_{3}$ the barrier for ring inversion was calculated as 13.3 kcal $\mathrm{mol}^{-1}\left(\mathrm{~T}_{\mathbf{c}}=10^{\circ} \mathrm{C}\right)$ indicating that the introduction of the two ethyl groups slightly increases the rigidity of the system by about $0.8 \mathrm{kcal} \mathrm{mol}^{-1}\left\{\Delta \mathrm{G}_{\mathrm{c}}{ }^{\ddagger}=12.5 \mathrm{kcal} \mathrm{mol}{ }^{-1}\left(\mathrm{~T}_{\mathrm{c}}=0^{\circ} \mathrm{C}\right.\right.$, $\Delta v=243.65 \mathrm{~Hz}$) for tetrahydroxy[3.1.3.1]M CP 3 in $\left.\mathrm{CDCl}_{3}\right\}$. While the four hydroxy groups in tetrahydroxy[3.1.3.1]M CP 3 can serve as a donor or an acceptor of hydrogen bonds, the OEt groups in diethoxy[3.1.3.1]M CP (distal-4b) can serve only as a donor. The decreased rigidity of tetraethoxy[3.1.3.1]M CP 5b may be attributed to the loss of an $\mathrm{OH} \cdots \mathrm{O}$ hydrogen bond in spite of the much bulkier OEt substituent than the OH group.

Ring inversion by oxygen-through-the-annulus rotation is allowed for tetraethoxy and tetrapropoxy derivatives 5b,c (for 5 c; coalescence temperature ca. $90^{\circ} \mathrm{C}$) but inhibited for the tributoxy derivative $5 \mathbf{d}$ and benzyloxy derivative $\mathbf{5 f}$.

Shinkai et al. reported that in the calix[4]arenes the ethyl group only introduces some steric hindrance and that the rotation is completely inhibited by the bulkier propyl group. ${ }^{6}$ In [3.1.3.1]M CP 5, on the other hand, the propyl group is also bulky enough to inhibit the rotation, but the conformational ring inversion can still occur above $90^{\circ} \mathrm{C}$. The results consistently reveal that it is slightly more difficult to inhibit the rotation in [3.1.3.1]M CP 5 than in 0 -alkylated calix[4]arenes: in other words, the inner cavity of 5 is apparently larger due to the two propane bridges than that of O -alkylated calix[4]arenes.

The $\mathrm{ArCH}_{2} \mathrm{Ar}$ methylene protons and aromatic protons for tetrapropoxy[3.1.3.1]M CP 5c appeared as a set of doublets at $\delta=3.30,4.40(\mathrm{~J}=13.2 \mathrm{~Hz})$ and as a set of doublets at $\delta=6.98$, $7.10(\mathrm{~J}=2.4 \mathrm{~Hz})$ (relative intensity $1: 1$) at $-20^{\circ} \mathrm{C}$ in $\mathrm{CDCl}_{3}-$ CS_{2} (1:3). The middle methylene protons for the propane bridge $\mathrm{ArCH} 2_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$ are observed as a multiplet at $\delta 1.92$ 1.98. This pattern corresponds to a 1,4-alternate conformer similar to the corresponding tetrabenzyloxy derivative 1,4 -alternate-5f mentioned previously. The methyl protons in the propyl groups appear as a triplet to higher field at $\delta=0.60$. On the basis of the Corey-Pauling-K oltun (CPK) model of 1,4-alternate-5c, the 'anti-stepped conformation' of diphenylmethane moeties like [3.3]metacyclophane ${ }^{11-13}$ are possible. Thus four propoxy groups are located in the shielded region by the ring current effect of the opposing benzene rings. These findings strongly support the view that $\mathbf{5 c}$ adopts a 1,4-alternate conformation. Similar findings have been observed in the conformationally rigid tetrabutoxy[3.1.3.1]M CP 5d. Thus, 5d also adopts a 1,4-alternate conformation.

In contrast, in di-O-alkylated derivatives $\mathbf{4 c}$ and 4d, for example, the above described upfield shift for themethyl protons in thepropyl and butyl groups has not been observed. Therefore, dipropoxy[3.1.3.1]M CP 4c and dibutoxy[3.1.3.1]M CP 4d might adopt a cone-conformation due to the intramolecular hydrogen bonding between two hydroxy groups and the alkoxy groups. Thus the hydroxy groups and the alkoxy groups can be held strongly on the same side of the [3.1.3.1]M CP.

C onclusions

An interesting result was obtained by alkylation of the hydroxy groups of the tetraol 3. We have demonstrated inhibition of interconversion between conformers derived from the tetraol 3 by 0 -substitution different from the calix[4]arenes as a result of the intramolecular hydrogen bonding between the hydroxy groups and the 1,3-diarylpropane units being weaker than the corresponding bonding for the diarylmethane units. Thus, the weaker intramolecular hydrogen bonding in the tetraol $\mathbf{3}$ compound with that in the corresponding calix[4]arenes gives rise to flexibility of the propane linkages.
In conclusion, the presently prepared propane-bridged calix-

Fig. 6 Intramolecular hydrogen bonds in distal-4
arenes analogous to the metacyclophanes 4 and 5 have potential as rich sources of new types of host compounds.

Experimental

All mps and bps are uncorrected. NMR spectra were determined at 270 M Hz with a N ippon D enshi J EOL FT-270 N M R spectrometer with SiM_{4} as an internal reference: J-values are given in Hz . IR spectra were measured for samples as KBr pellets or a liquid film on NaCl plates in a N ippon D enshi JIR AQ20M spectrophotometer. M ass spectra were obtained on a Nippon Denshi JM S-01SA-2 spectrometer at 75 eV using a direct-inlet system through G LC.

M aterials

The preparation of 6,13,22,29-tetra-tert-butyl-9,16,25,32-tetrahydroxy[3.1.3.1]metacylophane 3 has been described. ${ }^{1,14}$

Alkylation of 3 with alkyl halide in the presence of NaH

Typical procedure. A mixture of $\mathbf{3}(400 \mathrm{mg}, 0.567 \mathrm{mmol})$ and $\mathrm{NaH}(454.0 \mathrm{mg}, 11.35 \mathrm{mmol})$ in dry tetrahydrofuran ($36 \mathrm{~cm}^{3}$) and D M F $\left(9 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 1 h under nitrogen. Propyl bromide ($0.515 \mathrm{~cm}^{3}, 5.67 \mathrm{mmol}$) was then added to the mixture after which it was heated at reflux for an additional 3 h . A fter cooling to room temperature, the reaction mixture was acidified with $1 \mathrm{mHCl}\left(10 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3} \times 2\right)$. The combined extracts were washed with water ($50 \mathrm{~cm}^{3} \times 2$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a yellow oil. This was then distilled in vacuo to remove the excess of unchanged propyl bromide using a K ugelrohr apparatus to give a brown oil. The ${ }^{1} \mathrm{H}$ NM R spectrum of this oil was in accord with its being a mixture of three components; $\mathbf{5 c}$, distal-4c and proximal-4c in the ratio of 7:84:9. The residue was chromatographed on silica gel with hexane and hexane-benzene ($1: 1$) as eluents to give $\mathbf{5 c}$ (28 mg , 5.7%), distal-4c ($333 \mathrm{mg}, 74.4 \%$) and proximal-4c ($37 \mathrm{mg}, 8.3 \%$), respectively.
6,13,22,29-Tetra-tert-butyl-9,16,25,32-tetrapropoxy[3.1.3.1]metacyclophane 5c. Prisms [from hexane-benzene (1:1)], mp $234-236^{\circ}{ }^{\circ}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 2992, 2874, 1481, 1197, 1008 and 956; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.60(12 \mathrm{H}, \mathrm{brt}), 1.27(36 \mathrm{H}, \mathrm{s}), 1.20-1.30(8 \mathrm{H}$, $\mathrm{m}), 1.92-1.98(4 \mathrm{H}, \mathrm{m}), 2.20(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.73(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.30(10$ H, br s), $4.40(2 \mathrm{H}, \mathrm{br}$ s), $6.98(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4)$ and $7.10(4 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.4); m/z $872\left(\mathrm{M}^{+}\right)$(Found: C, 82.00; $\mathrm{H}, 10.27 . \mathrm{C}_{60} \mathrm{H}_{88} \mathrm{O}_{4}$ requires $\mathrm{C}, 82.52 ; \mathrm{H}, 10.16 \%)$.
6,13,22,29-Tetra-tert-butyl-9,25-dihydrox y-16,32-dipropoxy[3.1.3.1]metacyclophane distal-4c. Prisms [from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$ (1:1)], $\mathrm{mp} 285-287^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3331$ (OH), 2962, 2862, 1601, 1486, 1458, 1387, 1363, 1298, 1248, 1208, 1192, 1140, 1124, 1091, 1060, 995, 959, 881 and 868; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.15-1.27$ $(4 \mathrm{H}, \mathrm{m}), 1.20(18 \mathrm{H}, \mathrm{s}), 1.24(18 \mathrm{H}, \mathrm{s}), 1.32(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3), 1.93-$ $2.23(2 \mathrm{H}, \mathrm{m}), 2.24-2.44(4 \mathrm{H}, \mathrm{m}), 2.84-3.07(4 \mathrm{H}, \mathrm{m}), 3.48(2 \mathrm{H}$, d, J 13.4), 3.91-4.00 ($2 \mathrm{H}, \mathrm{m}$), $4.05(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4), 4.05-4.16$ (2 H, m), 6.90 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4$), $6.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 7.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.4), $7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4)$ and $8.05\left(2 \mathrm{H}, \mathrm{s}\right.$, replaced by $\left.\mathrm{D}_{2} \mathrm{O}\right) ; \mathrm{m} / \mathrm{z}$ $788\left(\mathrm{M}^{+}\right)$(Found: C, 82.08; H, 9.72. $\mathrm{C}_{54} \mathrm{H}_{76} \mathrm{O}_{4}$ requires C, 82.18; H, 9.71\%).

6,13,22,29-Tetra-tert-butyl-9,32-dipropoxy-16,25-dihydroxy[3.1.3.1]metacyclophane proximal-4c. Prisms [from CHCl_{3} M eOH (1:1)], mp 274-276 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3291$ (OH), 2961, 2883, 1486, 1458, 1391, 1363, 1302, 1248, 1208, 1124, 1061, 990, 957, 880 and $870 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.21$ ($18 \mathrm{H}, \mathrm{s}$), 1.23 (18 $\mathrm{H}, \mathrm{s}), 1.21-1.23\left(6 \mathrm{H}, \mathrm{CH}_{3}\right.$ proton signal overlaps with tertbutyl proton signals), 1.71-1.89 ($4 \mathrm{H}, \mathrm{br}$ s), 2.02-2.17 ($4 \mathrm{H}, \mathrm{m}$), 2.19-2.46 ($4 \mathrm{H}, \mathrm{m}$), 2.86-3.09 ($4 \mathrm{H}, \mathrm{m}$), $3.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.2$), 3.84-4.02 ($4 \mathrm{H}, \mathrm{m}$), 4.06 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.2$), 6.90 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4$), $6.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 7.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 7.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4)$ and 7.82 ($2 \mathrm{H}, \mathrm{s}$, replaced by $\mathrm{D}_{2} \mathrm{O}$); m/z 788 (M ${ }^{+}$) (Found: C, 82.10; $\mathrm{H}, 9.65 . \mathrm{C}_{54} \mathrm{H}_{76} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 82.18 ; \mathrm{H}, 9.71 \%\right)$.

Compounds distal-4a, 4b, 4d and 5a, 5b, 5e, $\mathbf{5 f}$ were prepared in a similar manner to that described above. The yields are given in Table 1.
6,13,22,29-Tetra-tert-butyl-16,32-dihydroxy-9,25-dimethoxy[3.1.3.1]metacyclophane distal-4a. P risms [from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (1:1)], $\mathrm{mp}>300^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3413$ (OH), 2960, 2866, 1482, 1459, 1363, 1298, 1208, 1169, 1105, 990 and 880 $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.20(18 \mathrm{H}, \mathrm{s}), 1.25(18 \mathrm{H}, \mathrm{s}), 1.43-1.61(4 \mathrm{H}, \mathrm{m})$, 2.61-2.69 ($8 \mathrm{H}, \mathrm{m}$), 3.78 ($4 \mathrm{H}, \mathrm{s}$), 3.98 ($6 \mathrm{H}, \mathrm{s}$), 6.92 ($2 \mathrm{H}, \mathrm{d}$, J 2.4), $6.98(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 7.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 7.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4)$ and $7.97(2 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{z} 732\left(\mathrm{M}^{+}\right)$(Found: C, 82.06; H, 9.34. $\mathrm{C}_{50} \mathrm{H}_{68} \mathrm{O}_{4}$ requires $\mathrm{C}, 81.92 ; \mathrm{H}, 9.35 \%$).

6,13,22,29-Tetra-tert-butyl-9,16,25,32-tetramethoxy-
[3.1.3.1]metacyclophane 5a. Prisms (from benzene), mp $>300^{\circ} \mathrm{C}$ (lit., ${ }^{14} \mathrm{mp}>300^{\circ} \mathrm{C}$).

6,13,22,29-Tetra-tert-butyl-9,25-diethoxy-16,32-dihydroxy-
[3.1.3.1]metacyclophane distal-4b. P risms (from benzene), mp $>300^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3339(\mathrm{OH}), 2960,1486,1363,1207$ and $1030 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}\right) 1.22(18 \mathrm{H}, \mathrm{s}), 1.25(18 \mathrm{H}, \mathrm{s}), 1.32(6 \mathrm{H}$, t, J 7.3), 1.55-1.65 ($4 \mathrm{H}, \mathrm{m}$), 2.63 ($8 \mathrm{H}, \mathrm{br}$ s), 3.74 ($4 \mathrm{H}, \mathrm{br} \mathrm{s}$), $4.12(4 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3), 6.91(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 6.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 7.07$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4$), $7.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4)$ and $8.04(2 \mathrm{H}, \mathrm{s}$, replaced by $\mathrm{D}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}\right) 1.22(18 \mathrm{H}, \mathrm{s}), 1.25(18 \mathrm{H}, \mathrm{s}), 1.32$ (6 H, t, J 7.3), 1.55-1.65 (2 H, m), 2.00-2.40 (6 H, m), 2.70-3.00 (4 H, m), 3.35 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4$), 3.90 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4$), $4.12(4 \mathrm{H}, \mathrm{q}, \mathrm{J}$ 7.3), $6.91(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 6.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 7.07(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4)$, $7.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4)$ and $8.04\left(2 \mathrm{H}, \mathrm{s}\right.$, replaced by $\left.\mathrm{D}_{2} \mathrm{O}\right) ; \mathrm{m} / \mathrm{z} 760$ $\left(\mathrm{M}^{+}\right)$(Found: C, 82.28; $\mathrm{H}, 9.42 . \mathrm{C}_{52} \mathrm{H}_{72} \mathrm{O}_{4}$ requires $\mathrm{C}, 82.06 ; \mathrm{H}$, 9.53\%).

6,13,22,29-Tetra-tert-butyl-9,16,25,32-tetraethoxy[3.1.3.1]-

 metacyclophane 5 b. Prisms [from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}(1: 1)$], mp $256-258{ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2957,2933,2862,1486,1458,1389$, 1360, 1208, 1193, 1111 and 1031; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.85(12 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 6.7), 1.26 ($36 \mathrm{H}, \mathrm{s}$), $1.60(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.49(8 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.33(8 \mathrm{H}, \mathrm{d}$, J 6.7), $3.82(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.99(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4)$ and $7.06(4 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.4); m/z $816\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 73.14 ; \mathrm{H}, 8.84 . \mathrm{C}_{56} \mathrm{H}_{80} \mathrm{O}_{4} \cdot \mathrm{CHCl}_{3}$ requires $\mathrm{C}, 73.10 ; \mathrm{H}, 8.72 \%$).6,13,22,29-Tetra-tert-butyl-9,25-dibutox y-16,32-dihydroxy-
[3.1.3.1]metacyclophane distal-4d. Prisms (from hexane), mp $279-282^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3353(\mathrm{OH}), 2962,2870,1122,880$, 819, 667 and 656; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.10(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7), 1.19(18 \mathrm{H}, \mathrm{s})$, $1.24(18 \mathrm{H}, \mathrm{s}), 1.67-1.79(4 \mathrm{H}, \mathrm{m}), 1.91-2.01(4 \mathrm{H}, \mathrm{m}), 2.08-2.20$ ($4 \mathrm{H}, \mathrm{m}$), 2.23-2.45 ($4 \mathrm{H}, \mathrm{m}$), 2.82-3.09 ($4 \mathrm{H}, \mathrm{m}$), $3.47(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 13.7), $3.95-4.13(4 \mathrm{H}, \mathrm{m}), 4.05(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7), 6.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.4), 6.95 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4$), 7.05 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4$), 7.12 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4$) and $7.99\left(2 \mathrm{H}\right.$, s , replaced by $\left.\mathrm{D}_{2} \mathrm{O}\right)$; m/z $816\left(\mathrm{M}^{+}\right)$(Found: C, 82.38; $\mathrm{H}, 9.64 . \mathrm{C}_{56} \mathrm{H}_{80} \mathrm{O}_{4}$ requires $\mathrm{C}, 82.3 ; \mathrm{H}, 9.87 \%$).

6,13,22,29-Tetra-tert-butyl-9,16,25,32-tetraallyloxy[3.1.3.1]metacyclophane 5 e . Prisms (from benzene), $\mathrm{mp} 218-222^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3075,3015,2958,2862,1479,1458,1420,1392$, 1363, 1292, 1202, 1115, 992, 917 and 873; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.23$ (36 H, s), 2.80 ($8 \mathrm{H}, \mathrm{br}$ s), 3.85-3.87(4 H, br s), 3.23 ($8 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4$), $3.96(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.02(4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.8$ and 10.4), $5.06(4 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 1.8 and 17.7), $5.8-6.0(4 \mathrm{H}, \mathrm{m}), 6.90(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4)$ and $6.95(4$ H, d, J 2.4); m/z $864\left(\mathrm{M}^{+}\right)$(Found: C, 83.38; H, 9.54. $\mathrm{C}_{60} \mathrm{H}_{80} \mathrm{O}_{4}$ requires $\mathrm{C}, 83.29 ; \mathrm{H}, 9.32 \%$).

9,16,25,32-Tetrabenzylox y-6,13,22,29-tetra-tert-butyl-
[3.1.3.1]metacyclophane cone-5f. Prisms [from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$
(1:1)], mp 156-158 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}^{2} / \mathrm{cm}^{-1} 3063,3030,2962,1479\right.$, $1453,1194,758,729$ and $696 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.12(36 \mathrm{H}, \mathrm{s}), 1.32-$ $1.48(2 \mathrm{H}, \mathrm{m}), 1.61-1.88(2 \mathrm{H}, \mathrm{m}), 2.18-2.28(4 \mathrm{H}, \mathrm{m}), 2.53-2.63$ ($4 \mathrm{H}, \mathrm{m}$), $3.08(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4), 4.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4), 4.61(8 \mathrm{H}, \mathrm{s})$, $6.78(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0), 6.97(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0)$ and $7.21-7.25(20 \mathrm{H}, \mathrm{m})$; $\mathrm{m} / \mathrm{z} 1064\left(\mathrm{M}{ }^{+}\right.$) (Found: C, 85.89; H, 8.54. $\mathrm{C}_{76} \mathrm{H}_{88} \mathrm{O}_{4}$ requires C, 85.67; H, 8.32\%).

Alkylation of 3 with propyl bromide in the presence of metal carbonates

Typical procedure. A mixture of $\mathbf{3}(400 \mathrm{mg}, 0.567 \mathrm{mmol})$ and caesium carbonate ($3.70 \mathrm{~g}, 11.4 \mathrm{mmol}$) in dry acetone ($36 \mathrm{~cm}^{3}$) was heated at reflux for 1 h under nitrogen. Propyl bromide ($0.52 \mathrm{~cm}^{3}, 5.67 \mathrm{mmol}$) was then added to the mixture after which it was heated at reflux for an additional 3 h . A fter cooling to room temperature, the reaction mixture was filtered. The filtrate was concentrated and distilled under reduced pressure to remove the excess of unchanged propyl bromide using a K ugelrohr apparatus to give a brown oil. The ${ }^{1} \mathrm{H}$ NM R spectrum of this oil was in accord with its being a mixture of three components: $\mathbf{5 c}$, distal- $\mathbf{4 c}$ and proximal- $\mathbf{4 c}$ in the ratio of $76: 12: 12$. The residue was chromatographed on silica gel with hexane and hexane-benzene ($1: 1$) as eluents to give 5c ($292 \mathrm{mg}, 58.9 \%$), distal-4c ($41 \mathrm{mg}, 9.2 \%$) and proximal-4c ($42 \mathrm{mg}, 9.4 \%$), respectively.

Alkylation of 3 with alkyl halide in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$

Typical procedure. A mixture of $\mathbf{3}(400 \mathrm{mg}, 0.567 \mathrm{mmol})$ and caesium carbonate ($3.70 \mathrm{~g}, 11.4 \mathrm{mmol}$) in dry acetone ($36 \mathrm{~cm}^{3}$) was heated at reflux for 1 h under nitrogen. Butyl bromide (1.52 $\mathrm{cm}^{3}, 14.19 \mathrm{mmol}$) was then added to the mixture after which it was heated at reflux for an additional 3 h . A fter cooling to room temperature, the reaction mixture was filtered. The filtrate was concentrated and distilled under reduced pressure to remove the excess of unchanged butyl bromide using a Kugelrohr apparatus. The residue was chromatographed on silica gel with hexane and hexane-benzene ($1: 1$) as eluents to give $\mathbf{5 d}$ (638 mg , 90%).
6,13,22,29-Tetra-tert-butyl-9,16,25,32-tetrabutoxy[3.1.3.1]metacyclophane 1,4 -alternate-5d. Prisms (benzene), mp 287$290^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.60(12 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7), 1.23-1.28(8 \mathrm{H}, \mathrm{m}), 1.27$ ($36 \mathrm{H}, \mathrm{s}$), 1.75-1.78 (8 H , m), 1.92-1.94 (4 H , m), 2.16-2.24 (4 $\mathrm{H}, \mathrm{m}), 2.68-2.78(4 \mathrm{H}, \mathrm{m}), 3.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.2), 3.25-3.35(8 \mathrm{H}$, $\mathrm{m}), 4.44(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.2), 7.00(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4)$ and $7.12(4 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.4); m/z $928\left(\mathrm{M}^{+}\right)$(Found: C, 82.58; $\mathrm{H}, 10.64 . \mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{4}$ requires C, 82.7; H, 10.41\%).

Compounds cone-5f and 1,4-alternate-5f were prepared in a similar manner to that described above The yields and reaction conditions are shown in Table 3.
9,16,25,32-Tetrabenzylox y-6,13,22,29-tetra-tert-butyl-
[3.1.3.1]metacyclophane $\mathbf{1 , 4}$-alternate- 5 . Prisms [from $\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}(1: 1)], \mathrm{mp} 286-292^{\circ} \mathrm{C} ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2865,2904$, 1479, 1454, 1362, 1195, 1020, 728 and 594; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.08$ (36 $\mathrm{H}, \mathrm{s}), 1.40-1.59(4 \mathrm{H}, \mathrm{m}), 2.03-2.14(4 \mathrm{H}, \mathrm{m}), 2.49-2.58(4 \mathrm{H}$, m), 3.29 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4$), $4.35(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.5), 4.45(4 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 11.5), $4.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4), 6.91(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0), 6.63-6.73(16 \mathrm{H}$, m), $7.00(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0)$ and $7.12(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0)$; m/z 1064 $\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 85.88 ; \mathrm{H}, 8.21 . \mathrm{C}_{76} \mathrm{H}_{88} \mathrm{O}_{4}$ requires $\mathrm{C}, 85.67 ; \mathrm{H}$, 8.32\%).

References

1 A part of the present paper has been published as preliminary communications: T. Yamato, Y. Saruwatari, S. N agayama, K. M aeda and M. Tashiro, J. Chem. Soc., Chem. Commun., 1992, 861.

2 (a) C. D. Gutsche, Calixarenes, Royal Society of Chemistry, Cambridge, 1989; (b) J. Vicens and V. Böhmer, Calixarenes: A Versatile Class of M acrocyclic Compounds, K luwer A cademic Publishers, C ambridge, 1990; (c) C. D. Gutsche, A cc. Chem. Res., 1983, 16, 161.

3 (a) J.-D. van Loon, L. C. Groenen, S. S. Wijmenga, W. Verboom and D. N. Reinhoudt, J. Am. Chem. Soc., 1991, 113, 2378; (b) L. C. Groenen, J.-D. van Loon, W. Verboom, S. Harkema, A. Casnati, R. Ungaro, A. Pochini, F. Ugozzoli and D. N. Reinhoudt, J. A m. Chem. Soc., 1991, 113, 2385.
4 (a) K. Iwamoto, K. A raki and S. Shinkai, J. Chem. Soc., Perkin Trans. 1, 1991, 1611; (b) K. A raki, K. Iwamoto, S. Shinkai and T. M atsuda, Chem. Lett., 1989, 1747; (c) K . I wamoto, K . A raki and S. Shinkai, Tetrahedron, 1991, 47, 4325.

5 (a) M. Tashiro, A. Tsuge, T. Sawada, T. M akishima, S. H orie, T. A rimura, S. M ataka and T. Y amato, J. Org. Chem., 1990, 55, 2404; (b) F. Vögtle, J. Schmitz and M. N ieger, C hem. B er., 1992, 125, 2523; (c) T. Yamato, K. Hasegawa, Y. Saruwatari and L. K. Doamekpor, Chem. Ber., 1993, 126, 1435; (d) T. Yamato, Y. Saruwatari, L. K. D oamekpor, K. H asegawa and M. K oike, Chem. Ber., 1993, 126, 2501; (e) T. Yamato, L. K. D oamekpor H. Tsuzuki and M . Tashiro, C hem. Lett., 1995, 89.

6 (a) K. Iwamoto, K. A raki and S. Shinkai, J. Org. Chem., 1991, 56, 4955; (b) K . I wamoto and S. Shinkai, J. Org. Chem., 1992, 57, 7066.
7 K. Fujimoto, N. Nishiyama, H. Tsuzuki and S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 1992, 643.
8 (a) K. A raki, N. H ashimoto, H. Otsuka and S. Shinkai, J. Org. Chem., 1993, 58, 5958; (b) K. A raki, K. Inaba, H. Otsuka and S. Shinkai, Tetrahedron, 1993, 49, 9465; (c) H. M atsumoto, S. N ishio, M . Takeshita and S. Shinkai, Tetrahedron, 1995, 51, 4647

9 (a) M. Nishio and M. Horita, Tetrahedron, 1989, 45, 7201; (b) C. D. A ndreetti, R . U ngaro and A. Pochini, J. Chem. Soc., Chem. Commun., 1979, 1005; (c) R . U ngaro, A . Pochini, C. D. A ndreetti and O. Domiano, J. Chem. Soc., Perkin Trans. 2, 1985, 197; (d) M . A . M cK ervey, E. M . Seward, G. Ferguson and B. L. Ruhl, J. Org. Chem., 1986, 51, 3581; (e) D. J. Cram, S. K arbach, H.-E. Kim, C. B. K nobler, E. F. M arverick, J. L. Ericson and R. C. Helgeson, J. Am. Chem. Soc., 1988, 110, 2229; (f) P. Soncini, S. Bonsignore, E. D alcanale and F. U gozzoli, J. Org. Chem., 1992, 57, 4608; (g) J. L. A twood, S. G. Bott, C. Jones and C. L. R aston, J. Chem. Soc.,

Chem. Commun., 1992, 1349; (h) K. K obayashi, Y. A sakawa, Y. K ikuchi, H. Toi and Y. A oyama, J. Am. Chem. Soc., 1993, 115, 2648; (i) T. Yamato, A. M iyazawa and M. Tashiro, J. Chem. Soc., Perkin Trans. 2, 1993, 3127.
10 J. M. H arrowfield, M . I. Ogden, W. R . R ichmond and A . H. White, J. Chem. Soc., Chem. Commun., 1991, 1159.

11 (a) R . W. Griffin, J r., Chem. Rev., 1963, 63, 45; (b) D. J. Cram, Acc. C hem. Res., 1971, 4, 204; (c) C. J. Brown, J. Chem. Soc., 1953, 3278; (d) B. H. Smith, B ridged A romatic Compounds, A cademic Press Inc., N ew York, NY, 1964; (e) Cyclophanes, eds. P. M. K eehn and S. M. Rosenfield, A cademic Press, N ew York, 1983, vol. 1, ch. 6, p. 428.

12 M. F. Semmelhack, J. J. H arrison, D. C. Young, A. Gutiérrez, S. R afii and J. Clardy, J. A m. Chem. Soc., 1985, 107, 7508.

13 (a) K. K obiro, M. Takashi, N. Nishikawa, K. K ikuchi, Y. Tobe and Y. Odaira, Tetrahedron Lett., 1987, 28, 3825; (b) K. K urosawa, M. Suenaga, T. Inazu and T. Yoshino, Tetrahedron L ett., 1982, 23, 5335; (c) T. Shinmyozu, Y. H irai and T. Inazu, J. Org. Chem., 1986, 51, 1551; (d) K. Sako, T. H irakawa, N. F ujimoto, T. Shinmyozu, T. Inazu and H. Horimoto, Tetrahedron Lett., 1988, 29, 6275; (e) T. M eno, K. Sako, M. Suenaga, M. M ouri, T. Shinmyozu, T. Inazu and H. Takemura, Can. J. Chem., 1990, 68, 440; (f) T. M eno, K. Sako, M. Suenaga, M. M ouri, T. Shinmyozu, T. Inazu and H. Takemura, C an. J. Chem., 1990, 68, 440; (g) K. Sako, T. M eno, H. Takemura, T. Shinmyozu and T. Inazu, Chem. Ber., 1990, 123, 630; (h) K. Sako, T. Shinmyozu, H. Takemura, M. Suenaga and T. Inazu, J. Org. C hem., 1992, 57, 6536.

14 T. Y amato, Y. Saruwatari and M. Y asumatsu, J. Chem. Soc., Perkin Trans. 1, 1997, 1725.

Paper 6/06354C
R eceived 16th September 1996
A ccepted 11th D ecember 1996

